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Using a probabilistic approach, the parallel dynamics of the Q-state Potts and 
Q-Ising neural networks are studied at zero and at nonzero temperatures. 
Evolution equations are derived for the first time step and arbitrary Q. These 
formulas constitute recursion relations for the exact parallel dynamics of the 
extremely diluted asymmetric versions of these networks. An explicit analysis, 
including dynamical capacity-temperature diagrams and the temperature 
dependence of the overlap, is carried out for Q = 3. Both types of models are 
compared. 
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1. I N T R O D U C T I O N  

Dur ing  the last  few years  there has been cons iderab le  interest  in neural  
ne tworks  with mul t i s ta te  neurons.  (I 26) Mode l s  using Q-Ising neurons  (M~ 
as well as models  using c lock- type  (11 14) and  Po t t s - type  (~26) neuron  states 

have been discussed. N e t w o r k s  of Q-Is ing and  c lock- type  neurons  can 
funct ion as associat ive memor ies  for g ray - toned  or  co lored  pat terns ,  while 
Po t t s  ne tworks  concern  in fact two-s ta te  response  functions a l lowing one of 
the states to have a more  compl ica ted  in ternal  s t ructure  (representing,  e.g., 
a d is t inc t ion  between b a c k g r o u n d  and pat tern) .  

In  this pape r  we cons ider  the para l le l  dynamics  of Q-state  Po t t s  and  
Q-Is ing neura l  ne tworks ,  using a probabi l i s t i c  a p p r o a c h  (see, e.g., refs, 27 
and 28). In  more  detai l ,  employ ing  a s ignal - to-noise  ra t io  analysis  based  on 
the law of  large numbers  and the central  l imit  theorem,  we derive evolu t ion  
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equations for the first time step at zero and nonzero temperatures for 
arbitrary Q. For simplicity we take the patterns and the neurons out of 
the same set of variables. This is no essential restriction. In the case of 
extremely diluted asymmetric versions of these networks the one-step 
evolution equations describe the exact dynamics. This dynamics is solved 
explicitly for Q = 3. 

The rest of this paper is organized as follows. In Section 2 we intro- 
duce the Q-state Potts model and we present the general formula for one- 
step parallel dynamics at arbitrary temperature. Section 3 does the same for 
the Q-state Ising case. The fundamental difficulty to obtain more steps in 
these fully connected symmetric networks is the strong feedback (see, e.g., 
ref. 29). In Section 4 we consider the extremely diluted asymmetric versions 
of these models. In this case the feedback is suppressed (see refs. 30 and 31 
and the references therein) such that the one-step dynamics accounts for 
the full dynamical evolution. We write down explicitly the corresponding 
fixed-point equations for Q = 3. Comparing the two types of models, given 
a uniform distribution of the patterns, we find that in the case of the Potts 
model the fixed-point equation for the overlap involves three Gaussian 
integrations, while in the case of the Ising model the fixed-point equation 
contains only one Gaussian integration but we also need a fixed-point 
equation for the activity of the patterns to have a closed system of equa- 
tions. Finally, in Section 5 we discuss and compare in detail the dynamical 
capacity temperature diagrams and the temperature dependence of the 
relevant order parameters for these extremely diluted Q = 3 models. 

2, PARALLEL D Y N A M I C S  OF THE Q-STATE POTTS N E T W O R K  

2,1. The Model  

Consider a network of N neurons, A = {1, 2,..., N}. We suppose that 
each neuron i ~ A can be described by a Potts spin ai ~ ~ = { 1, 2,..., Q }. The 
patterns to be stored in this network, { ~ } ,  ieA,  / ~ =  {1, 2,..., p}, 
are taken to be independent identically distributed random variables 
(i.i.d.r.v.) with uniform distribution on 2, i.e., 

1 
P r { ~ f = k e ~ } -  (1) Q 

for i eA, # e ~ .  The neurons are interconnected by a synaptic matrix 
kl ,u J = [ J i j ( { ~ s } , s e A , # e ~ ) ]  for i, j e A ,  and k, le~ .  Given a network 

configuration aA = {aj}, j e  A, the energy potential of neuron i e A is then 

hi(o,; ~A\,)= -- Z E Y~u(k, ~,) u(/, aj) (2) 
j e A \ i  k, le-~ 
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with u the Potts spin operator given by 

U(r162 a j )=  Q6(~ ,  a s ) -  1 (3) 

The nonzero-temperature ( T =  f l - l >  0) parallel dynamics D I r of the 
system is defined by simultaneous updating of the neurons according to the 
conditional probabilities: 

exp[ - f ih i (a ;  aA\i(t))] 
Pr {a~(t + 1 ) = a ~ ~1 a,\.i(t) } - Es~ ~ exp[ -- flhi(s; aA\/(t))] (4) 

To build in the capacity for learning and memory in this network, its 
stationary configurations representing the retrieved patterns, Dl~)g*= ~*, 
i.e., the attractors of DI ~), must be correlated with the stored patterns {~"}, 
p E ~.  This can be achieved ~5) by choosing the learning rule 

1 
Jijk' = Q 2N ~.~" u ( ~ ,  k) u(~ ~, l) (5) 

We remark that (5) tells us that each pair of neurons is connected. 

2.2. O n e - S t e p  D y n a m i c s  at A r b i t r a r y  T e m p e r a t u r e  

We first look at the Potts network introduced above at zero temperature 
(fl - .  oo). Then the dynamics (4) at l e A  gets the form 

cri(t + 1)-~,=~-r~~ hf(a,(t+ 1); ~A\~(t)) = min hi(s,; aA\e(t)) (6) 
s ~ , ~  

Let the initial configuration ~A(t=0)  [in the sequel we denote this by 
~z(0)] correspond to a realization of the i.i.d.r.v. {ai(0)}, iEA,  with 
uniform distribution on ~ correlated with only one pattern, say ~v, i.e., 

1 
pr{ai(O) = ~u} = ~  (1 + cSu~m~)) 

~d 
(7) 

where m~) > O. By the law of large numbers (LLN), the overlap with pattern 
{v at t = 0 is defined as 

m"(0) - lim m ] ( 0 ) =  lim --1 ~A u(~y, as(0)) 
N ~ o o  N ~ c ~  N j 

P r  
= E [ u ( ~ ,  aj(0))] = cS~m~) (8) 
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where the convergence is in probability. (32) According to ref. 27, the evolu- 
tion of the main overlap (8) generated by D ~ ]  can be calculated via an 
explicit computation of the internal network noise in the limit N--* oc at 
fixed e -  piN. (In the sequel the latter will be denoted as the a-limit.) Let 
~ ( ~ ) -  {# ~ ~ \ v :  ~ = k}. Then the energy potential (2) for neuron i can be k,  i - -  

written as 

-he(s,; aA\i(0)) = u(~i, si) m~\i(O) 
1 

+ ~ u(k, si) ~ E E u(r crj(0)) (9) 
k e . ~  ~ (v )  j c A \ i  IA E J'k, i 

The first term on the r.h.s, of (9) represents the contribution from the 
signal, the second term describes the noise contribution. Using (7), we see 
that for/~ # v 

E[u(~j, ~rs(0)) ] = 0 (10) 

Var[u(r  crj(0))] --- a"(0) = Q - 1 (11) 

such that {u(r aj(0))}, # e N ,  j e  N, is a sequence of i.i.d.r.v. Therefore, 
using the central limit theorem (CLT), we find that in the limit N--* 
(A I" N) the kth component of the noise term in (9) gets the form 

e - l i m ~  ~ ~ u(~,as(O)) ~ e( Y(k)(O,~, 1) (12) 
~(v)  j ~ A \ i  t2 ~ O"k, i 

where, as indicated, the convergence is in distribution (see, e.g., ref. 32). 
The quantity At(0, 1) is a Gaussian random variable with expectation 0 
and variance 1. We have used the fact that in the a-limit, large-deviation 
arguments (32) tell us that 

Pr ~k,~ />8 ~<exp(-2~p),  2~>0  forany 6 > 0  
P 

Hence, in the e-lim the random energy potential (9) converges in 
distribution to the random variable 

-h,(si;  ~(0 ) ) = u( ~ ,  si) mY(O) 

+ S  u(k, si)[e(Q~-1)] I/2 ~('''ov,i, , 1) (,3) 
ke- .~  

where, using the initial condition (7), we know that L/~(k)(O 1)}, k e ~ ,  t v , i~  ' 
iE ~, are independent Gaussian random variables. 
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To calculate the configuration at the next time step t = 1, we have to 
consider the following two possibilities: 

If s~= ~ ,  then, recalling (3) and (13), the energy potential becomes 

- h l  a~- - h , ( ~  = ~;; ,~(o)) 

:(Q--1)(m~(O)+Ce(~e)]J/ZY~ki=~;)(O, 1)) 

else si = Tc ( # ~ )  and the energy potential is given by 

- h l  ~ = - h ~ ( ~  = ~; ~(0)) 

( ) = ( - - 1 )  m~(0)+ 5 JV~.k/(0,1) 
k s a \~ 

To solve the minimization problem in (6), we compute the difference 

-- h, ~) = Qm~(O)+QI~(Q-~-I).]I/2 [Jf~.i(k= ~,)(0, 1) - .A#~.r~)(O. 1 )] Ji=hl b~ 

(16) 

such that the configuration at t = 1 is 

~i(1)=~-; if 3e>O (17) 
( k  = kma x if Ai~O 

where kmax is defined by the relation 

~r(~.ax~m 1)=  max ~/'f,)(0, 1) J r  v, i I t . ' ,  (18) 

Since, as we have noticed already, the {JV~,k]}, ke.~,  are a collection of 
i.i.d.r.v., we can write 

Pr {JV'~,~ax ~< x} = (~(x))Q 1 (19) 

, ;-  
q~(x)-- (2n)l/2 - ~  dz exp - (20) 
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Therefore we arrive at 

Pr{ai(1)= ~l~(0)} = f Dy ~ mv(O)+y (21) 
oo 

,/y 
DY= (2lr)l/2 exp ( -  Y---2 ) (22) 

and finally [cf. (8)] we obtain 

mY(l) = Q Pr{~i(1) = ~ I ~(0)} - 1 (23) 

m"(1)=0,  # r  (24) 

Furthermore, using (11), we calculate 

a"(1) = Var[u(~ ,  ej(1))] = Q -  1 = a~(0) (25) 

At this point we remark that the key observation in the foregoing 
derivation is that the CLT can be used in (12) because {ai(0)}, iE N, are 
i.i.d.r.v, correlated with only one pattern {~. 

At nonzero temperatures the dynamical evolution can be calculated 
using the method of auxiliary temperature noise (see, e.g., ref. 27). 

For each i~ N let {~bi(l)}, l~ {1, 2 ..... n} be a collection of i.i.d.r.v, with 
joint distribution 

F~(xl,x2,...,xn)-Pr { O i ( l ) < x l }  = 1 +  e Bxl (26) 
l = 1  / = 1  

The conditional probability (4) for D~ ~) then gets the form 

Pr{cr~(t + 1)---ae2i~A\i(t)} 

= P r {  ~ {O~(s)<hi(s;,a\i(t))-h~(a;,A\~(t))}} (27) 
seY\a 

This representation of the dynamics allows us to deal with the temperature 
and the internal noise simultaneously. Substituting (14)-(16) in (27) taken 
at the time step t = 1, we arrive at the following result: 

Pr{ai(1) = ~ l  ~(0)} 

= P r  { , ~  {Oi(s)<Qmv(O)+Q Ia(Q~- 1)] 1/2 

x [y(r 1) AP(~)(O 1 ) ] ~  (28) )J 
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Finally, using (26), we obtain the explicit formula 

Pr{ai(1) = r ~(0)} 

= fR DYfRQ Dxl'"DXQ-1 

xIl  + ~\Qexp(-fl {Qmv(O)+QIC~(Q-Q- l!ll/2(y-xz)})1-1 

(29) 

where Dxi is defined in (22). The evolution of the main overlap reads 
[compare (23)-(24)] 

mY(l)= Q Pr{~i(1)= ~Jt~(0)}-  1 (30) 

We remark that for fl--* ~ ,  Eq. (29) reduces to (21). 

3. PARALLEL D Y N A M I C S  OF T H E  Q - I S I N G  N E T W O R K  

3.1, The Mode l  

Consider a network A of N neurons which can take values in the set 

5P - -={ - I=s I<s2  < -.- <s o I<SQ= +1} 

The p patterns to be stored in this network, {r iEA = {1, 2,..., N}, 
/ t e N =  {1, 2 ..... p}, are supposed to be i.i.d.r.v, with zero mean, E [ ~ ]  =0, 
and variance a =Var[r  The latter is a measure for the activity of the 
patterns. 

Given a configuration aA = {aj}, jEA, the local field hi in neuron 
iEA is 

hi(~A)= ~ J,~a i (31) 
j e A \ i  

where the synaptic couplings are given by 

1 
Ju=~aa Z ~2r (32) 

The parallel dynamics of this network is then defined by the transition 
probabilities 

exp[--flei(skF~A\i(t))] (33) 
Pr{ai(t + 1) = sk e ~ l t T A \ i ( t ) }  = ~ s e  ~ exp[ --flei(St~A\i(t)) ] 
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Here the energy potential e~(s[o) of neuron / is  taken to be (4) 

~i(s I ~ \ , )  = - �89 2] b > 0  

Boll~ et al. 

(34) 

3.2. One-Step Dynamics at Arbitrary Temperature 

Considering the network first at zero temperature, 
(33)-(34) at i eA  takes the form 

the dynamics 

~ri( t)~ai( t+l)=sk:  minei(sl~rA\i(t))=e,(skl~A\i(t)) (35) 
s t y  

This rule is equivalent to using a gain function (Q > 2) 

ai(t + 1) = g[h,(~A\~(t)) ] (36) 

which has, since 5 a is finite, a steplike shape. In the case of equidistant 
states 

�9 2 ( k -  1) Q} 
5 p = S a e = { s k = - l +  U -  i- , k = l ,  2,..., 

it looks like 

f+ 1 

g(x) = ~sk 

l -  1 

if SQ_l +(Q-1)-~<<.x/2b 
if s ~ - ( Q -  1) - l < x / 2 b < s ~ +  ( Q -  1) -1 

if x /2b<~s2-(O-1)  -1 
(37) 

To measure the retrieval quality of the network, i.e., to estimate the 
evolution of an initial configuration aA(0) to a stored pattern {", one can 
use the Hamming distance 

1 
i ~ A  

1 2 
(38) 

From this relation it is clear that the dynamics can be completely described 
in terms of the main overlap 

1 
rnA( t )=~a  ~ ~ai(t) (39) 

l E A  
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and the arithmetic mean of the neuron activities 

1 
aA(t)= ~ ~ [ai(t)] 2 (40) 

i ~ A  

Suppose that the initial configuration {~ri(0)}, imA, is a collection 
of i.i.d.r.v, with mean E[cri(0)]=0,  variance Var[~i(0)]=a(0),  and 
correlated with only one stored pattern: 

E [ ~ r z ( 0 ) ]  =6~vm~o a, m~>0 (41) 

This equation corresponds to (8) for the Potts model. This implies that by 
the LLN one gets for the activity and the main overlap at t = 0 

a(0)= lim 1 Pr u~ o, N ~ [a~(0)]; = E[a/2(0)] (42) 
l e A  

m'(O)-  lim 1 u ~ a a  E ~i~ri(0)~ P~=m 0~ (43) 
i c A  

To obtain the configuration at t = 1 we first have to calculate the local field 
(31) at t=0 .  Recalling the learning rule (32), we obtain 

1   oj(0) 
j e A \ i  

1 
1 Z ~/(Na)l/-------5 Z ~ j ( 0 )  (44) 

+ ~ (Pa) m ~,~\~ j~A\i 

where ~ = p/N. The properties of the initial configurations (41)-(43) assure 
us that the first term on the r.h.s of (44) converges, at least in distribution, 
to the random variable 

1 
lim ~ a a  ~ ~]o-j(0) ~ ~m~(0) (45) 

N ~  j ~ A \ i  

This random variable is independent of the second term on the r.h.s, of 
(44). In this second term we apply the CLT to find 

1 
lim 1 Z 4; (Ua)~/2 ~ ~r j (O)  = [ - a ( O ) ]  1/2 JV'(O, 1) (46) 

N ~  oV (pa) 1/2 #e.~\,, j E A \ i  

Therefore, in the limit N ~  ~ the local field is the sum of two 
independent random variables, i.e., 

hi(r lim h~(~A(O)) ~ ~m~(O) + [-cr iV(0, 1) (47) 
N ~  
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This allows us to compute the probability distribution of the local field at 
t = 0, 

Fh(o)(X) = Pr {hi(~(0)) ~< x} 

= ~ Pr{h,.(ty(0))~<x]~} P r { ~ = s k }  (48) 
SkE5 p 

as a function of the probabilities Pr{~f = sk e 5g}. For the latter one could 
take, e.g., in analogy with (1), a uniform distribution. Recalling (36), (42), 
and (43), the activity and the main overlap for the configuration t~(1) can 
then be obtained using 

a(1) = • ( S k )  2 Pr{~ri(1)=sk} (49) 
Sk E ,~' 

mY(l) =-1 ~ sksk, Pr{cre(1)=sk, l ~ = s k } P r { ~ = s k }  (50) 
a 

Sk, Sk '~  ~ '  

For the gain function (37), e.g., we arrive at the following results for 
the probabilities needed in (49), (50): 

Pr{o'/(1) = +1 } = dFh(o)(X ) 
2 b ( s Q _ l + ( Q - - 1 )  I) 

r2b(sk+(O 1) -~) 
Pr{~ri(1)=Sk} = |~ 1~-1~ dF~(o~(X) 

2b(s2 (Q - 1) -1  ) 

Pr { a~ (1) = -- 1 } = J drh(o)(X ) (51 ) 
ao 

and 

Pr{a~(1)= +1 [ ~ = s k }  

= Pr {1 - (Q- l ) - l<~- -~  {skmv(O)+ [c~a(O)]l/2~A/'(O, 1)}} (52) 

Pr{a~(1)=sk , r  _+1[~ =Sk} 

= Pr { s k , - ( Q - 1 )  1< 1 {skmv(O)+ [c~a(O)] 1/2 ~g'(O, 1)} 

<sk ,+  ( Q - 1 ) ~ }  (53) 

Pr{a~(1) = - l l r  

=pr{~__~{skm~(O)+[c~a(O)]l/2 A/.(O, 1 ) } < _ l + ( Q _ l )  l} (54) 
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The evolution equations at nonzero temperature can be derived by 
making use of the same method as in the Q-state Potts case in Section 2.2. 
Then the analogue of (27) reads 

Pr{ai(1) =ski a(0)} 

s! ~ 5 ~ \ s k  

where ~i(sla(0)) is defined by (34) and the q~ are distributed according 
to (26). 

At this point it is important to remark that in order to calculate the 
distribution of the configuration {a~(1)}, i~A, it is sufficient to know the 
main overlap mY(0), the activity a(0), and the distribution Pr{~}  of 
the stored patterns. 

Although the formulas (49)-(55) are completely determined, they are 
in a less explicit form than those for the Potts model [recall (29)-(30)] 
because here the distribution of the patterns is not supposed to be uniform, 
but it is only required to satisfy E [ ~ ]  =0.  Therefore, any calculation 
heavily depends on a full a priori distribution of the patterns. However, for 
the nontrivial case Q = 3, E [ ~ ]  = 0, the parameter V a r [ ~ ]  = a uniquely 
determines the distribution of the patterns: for { ~  }, i~ A, # ~ N i.i.d.r.v., 
Pr{r = _+1} =a/2 and P r { ~ = 0 }  = 1 - a .  

In the next section we explicitly study and compare the three-state 
Ising network and the three-state Potts network in the limit of extreme 
asymmetric dilution. Indeed, as we will argue, in this limit the one-step 
parallel dynamics is the exact dynamical evolution. 

4. EXTREMELY DILUTED A S Y M M E T R I C  THREE-STATE 
N ETWO R KS 

The networks we have considered in the foregoing sections are fully 
connected and symmetric. The fundamental difficulty of the treatment of 
parallel dynamics in such systems is the strong feedback. (29) 

To avoid this difficulty, we consider highly diluted asymmetric ver- 
sions of the models above. This class of neural networks was introduced in 
connection with Q = 2 Ising models. (3~ 

Let { e i j = 0 , 1 } ,  i , j # i ~ A ,  be i.i.d.r.v, with distribution F~ A~- 
Pr{co= 1} =c/N, c>0 .  The diluted Potts glass neural network is then 
defined via the random synaptic coupling matrix 

J~ '(c)=c~Nlkt- -'~u, i , j # i~A;  k,l~.~ (56) 
C 
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In the limit N--* ~ one obtains an infinite extremely diluted network. 
Two important properties of this network are essential for a further 
analysis.(3~ 

The first property is the high asymmetry of the connections, 

Pr{c , j  = cii} = ( N )  2 

P r { c o = l A c j i = O } = N ( 1 - N )  (57) 

Therefore, the number of symmetric connections in the infinite configura- 
tion e={ci j} ,  i , j r  is finite with probability one, i.e., almost all 
connections of the graph G~(e )=  {(i, j): co.= 1, i , j r  N} are directed: 
cij r cji. 

The second property in the limit of extreme dilution is a directed local 
tree structure of the graph GN(e ). By the arguments above the probability 
F~A)(c) that k connections are directed toward a given site i eA  is 

(58) r~A)(c)-Pr{k= ]T}in~l}-k! ( N - k ) !  N 1 -  

where Tlin)= {cji= 1, j e A \ i }  is the in-tree f o r / a n d  [Tliml its cardinality. 
This probability is equal to Pr{k=lT}~ = l { c 0 =  1, j~ A \ i } l }  for 
connections directed outward at a given site i e A. In the limit of extreme 
dilution we get a Poisson distribution: 

c k 

Jimo~ F(kAI(c) = ~. e c (59) 

Hence, the mean value of the number of in (out) connections for any site 
i e A  is E[]T}in/(~ =c.  The probability that two sites / a n d  i' have site 
j as a common ancestor is obviously equal to c/N. From E[]Tlin) I ] = c it 
follows that after t time steps the cardinality of the cluster of ancestors for 
site i will be of the order of c t. The same is valid for site i'. Therefore, the 
probability t h a t  the sites i and i' have disjoint clusters of ancestors 
approaches (1 - c'/N) c' ~- exp(-c2t /N)  for N>> 1. 

Summarizing, we find that in the limit of extreme dilution: 

(i) Almost all (i.e., with probability 1) feedback loops in G~(e) are 
eliminated. 

(ii) With probability one, any finite number of neurons have disjoint 
clusters of ancestors. 
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It would be interesting to study less severe types of dilution, e.g., 
Hamiltonian cycles, (33~ in which case the feedback is probably not 
suppressed completely. 

We now return to the parallel dynamics (4) for the extremely diluted 
network G~(c) in the limit c ~ oe. This means that we have infinite average 
connectivity, allowing us to store infinitely many patterns p = ec. 

Since, as argued above, there is no feedback in this system, the states 
of the neurons from different TI in) will remain independent in time: they 
receive their input from disjoint trees. So the configuration {~ri(1)}, ie  N, 
is again a collection of i.i.d.r.v, correlated with only one pattern {v. Hence 
Eqs. (29)-(30) for the Potts neurons and Eqs. (49)-(55) for the Q-Ising 
neurons remain valid at any moment t. 

Restricting ourselves to Q = 3 neurons (29), we get in the Potts case 

Pr{ai(t  + 1) = r [ ~(t)} 

=fR~DYfR2DxIDx2 

(• x 1 + exp{ -/?[3mY(t) + (6c@/2 (y - x,)] } (60) 
/ = 1  

m~(t+ 1)=3  P r{a i ( t+  1 ) = ~ f [ ~ ( t ) } -  1 (61) 

m~(t+ 1)=0,  # r  (62) 

such that the corresponding fixed-point equation has the form 

m*=3{~RIDYfR2DXIDx2 

( • x 1+  exp{-fl[3m*+(6cOm(y-xt)]} -~ (63) 
l = l  

where rn*=l imt~  ~ m~(t). We also recall [see (25)] that aU(1)=a~(0)= 
Q - 1 ,  implying that a"(t)=Q-1 is constant. The zero-temperature 
version of these equations can easily be written down recalling (19)-(24). 
For the fixed-point equation we obtain 

m*=3{f+~Dy[CI)(3)l/2m*+y)]2-~} (64) 

For the Q = 3 Ising network with a gain function of the type (37) with 
s~ = -1 ,  s2 = 0, s3 = +1, we arrive, after some straightforward calculations, 
at the following results for the activity and the overlap: 
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where 

f 
+ o o  

a(t+ 1)= Dz [aUB(m~(t) - lea(t)] 1/2 z) 
- -  o O  

+ (2 - a) Us([~a(t)] 1/2 z)] 

f +~176 m~(t+ 1)= Dz V~(m~(t) - [c~a(t)]l/2z) 
- -  o 0  

m"(t) = O, IJ r v 

(65) 

(66) 

(67) 

cosh(/?x/2) 
U ~( x ) = Y + cosh(/~x/2) (68) 

sinh(/~x/2) 
V~(x) = (69) 

7 + cosh(/~x/2) 

1 =- -~ e ~b/2 (70) 

The fixed-point equations can be read off from (65)-(67) by using again 
m* = l i m t ~  m~(t) and a * = l i m , ~  a(t). In the zero-temperature case 
Eqs. (65)-(67) reduce to 

a(t+ 1 ) = a -  5 erf [~a(t)]l/2 j +ef t  [c~a(t)]mj ] 

+ ( 1 -  a) [1--er f  ([c~a~) ] m )  ] (71) 

2[ (b+mV(,)) (72t mV(t + 1) = ~ erf \ l-c~a(t)] 1/2] - erf \ [ea(t)] v z j j  

These zero-temperature equations have also been studied in ref. 2. A fully 
connected version of this model has been simulated extensively in ref. 1. 

To end this section, we remark that the derivation of the Q = 3 results 
(65)-(70) and a similar calculation for analogous Q = 4 models suggest the 
following general formulas for the Q-Ising case: 

a(t + 1) 

f + ~ Dz ~ ( ~  se s 2 exp [ - lfls(~m~(t) + [~a(t)] 1/2 z - bs)] \ \  (73) 

rn~(t + 1) 

1 f+~  / /Y~ ,~ ,~ ,~sexp[- �89  
=a~ ~ Dz \ \  ~ s ~ - ~ p [ ~ 7  - - ( ~ 2 - 7 - - ~ s  ~ -// (74) 
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where ( ( . . . ) )  denotes the average over the distribution of the patterns. For 
zero temperature these formulas reduce to 

t/ a(t + 1 ) = Dz gZ(~rn~(t) + [c~a(t)] 1/2 z) 
- - o o  

m~(t+ 1)=  D z -  ~'g(r [aa(t)]'/2z) 
~ - -  o o  a 

(75) 

(76) 

We will come back to these formulas at a future occasion. 

5. D ISCUSSION OF THE N U M E R I C A L  RESULTS 

We now turn to an explicit discussion of the extremely diluted Q = 3 
networks. We start with the Potts model described by the evolution 
equations (63). The properties of the solutions of these equations are best 
summarized in a temperature-capacity diagram (Fig. 1) and an overlap 
bifurcation diagram (Fig. 2). In Fig. 1 the line TM indicates the temperature 
at which the retrieval states disappear discontinuously as a function of the 
loading capacity ~. This happens above the line To, the temperature at 
which the zero solution becomes stable. This behavior is reminiscent of a 
first-order transition, as can be read off from Fig. 2. Before studying the 
latter, we still remark that the maximal loading capacity is ~c = 1.226 in 
comparison with c~c=2/~=0.637 for the extremely diluted Hopfield 
model. (3~ For  the fully connected Q = 3  Potts model with sequential 
dynamics a mean-field theory approach leads to ~c=0.414(~5) versus 
c~ = 0.138 for the Hopfield model. (34) 

Figure 2 presents the overlap as a function of the temperature. First, 
we see that the ~ = 0 (finite number of patterns) behavior completely coin- 

2 . 2 -  

2 .0  

1 . 5 -  

1.0 

0 . 5  

0 . 0  
o.oo o.~5 o.~o 

"~~ T u 

o.~a ,30 1.z~ 
cc 

Fig. 1. The temperatures T m (full line) for the retrieval state and T O (dashed line) for the 
zero state as a function of the loading c~ for the Q = 3 Potts network. 
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- 1 . 0  - -  
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/ " / /// //]1 

0.5 1.0 1.5 2.0 
m 

2.5 

Fig. 2. The  over lap  m* as a funct ion of  the temperature  T for different values  of  the loading  
a for the Q = 3 Potts  network.  The  full l ine denotes  a stable solution.  % = 1.073, ec = 1.226, 
m * =  0.733 at c( c. 

cides with that found (again by a mean-field theory approach) for the fully 
connected Q =  3 network with sequential dynamics. (35) There are three 
solutions of the fixed-point equations (63): a retrieval state, a zero state, 
and a state with negative overlap. The retrieval state is stable from T =  0 
up to T=2 .185 ,  the negative overlap state is stable from T = 0  up to 
T = To = 2, and the zero state is stable for 2 ~ T < oo. For this case nearly 
maximal overlap m * =  2 is attained over some temperature region. 

When increasing c( the values of the overlaps become smaller. For 
0 < c( < C(o = 1.074 the situation is analogous to the c( = 0 case: there is a 
critical temperature To(c0 under which the negative overlap state is stable 
and the zero state unstable. Above To(a), besides the retrieval state, also 
the zero state is stable. (This is in contrast to the fully connected sequential 
case, where for c( # 0 there are five solutions of the fixed-point equations 
but only the retrieval state is stable. (35)) For c(c > a > C~o only the retrieval 
state and the zero state are stable. At critical capacity c( c the value of the 

.4 

.S �84 

.1 

.0 

b = 0  

b = . 2  

.~ b=.47 

0.0 0.2 0.4 0.6 0.8 l.O 
c( 

Fig. 3. A (T, c 0 d iagram for different values  of  the parameter  b for the Q = 3 Ising ne twork  
with a = 2/3. The  full l ine denotes  a second-order  transit ion,  the dashed line a first-order one. 
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Fig. 4. The loading c~ as a function of the parameter b for different values of the temperature 
T for the Q = 3 Ising network with c~ = 2/3. Full and dashed lines are as in Fig. 3. Below the 
dotted line there are no stable (m* = 0 ,  a* > 0 )  solutions for T = 0 .  
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Fig. 5. The retrieval properties for the Q -  3 Ising network with a = 2/3 as a function of 
the temperature T for b = 0 . 2  and c~=0.15: (a) the overlap m*, (b) the activity a*, and 
(c) the Hamming distance d* for both the retrieval and the sustained activity solutions. The 
full line denotes a stable solution. 
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overlap at T = 0  is m* =0.733 versus m * =  1.906 for the fully connected 
sequential model. 

Next we consider the Q = 3 Ising model. Solving the evolution equa- 
tions (65) (70) is now more involved because the time evolution of the 
overlap and the activity are coupled. We find three different types of fixed 
points, depending on the parameters of the model, i.e., the pattern activity 
a and the parameter b controlling the relative importance of the states 
which are low in absolute value (i.e., the zero state in the Q = 3 case): a 
retrieval fixed point (m* > 0 ,  a * > 0 ) ,  a sustained activity fixed point 
(m* = 0, a* > 0), and the zero fixed point (m* = 0, a* = 0). 

Again the overall situation is best summarized in a tem- 
perature-capacity diagram (Fig. 3). The specific model that we consider 
has bias zero and pattern activity a =  2/3 such that a pattern contains 
exactly as many zeros as plus or minus ones. As before the curves represent 
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0.4 

0.2 

, (a)  , , 
'b = 0.47 a = 0.15 

0%0 .0'3 .0'6 .0'9 ,;2 .15 

t.o ~ ~ (b) b = 0.47 r = 0.15 
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0.6- ~ " " ' )  
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0.2" - . . . .  ~ / ( 0 , a . )  "11" 

0.0 ~ " - ~ ,  
.oo .00 .06 .d9 .t'2 .15 

(e) 
2.0 I i b = 0.47 ct i= 0.15 

1 . 0  

0.5 ) 

.00 .03 .06 .09 .12 .15 
T 

Fig.  6, T h e  s a m e  as  Fig .  5 for b = 0 .47  a n d  ~ = 0 .15 .  
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the temperatures at which the retrieval solution(s) disappear(s). For b = 0, 
implying that the neurons do not take on the zero state, we find the maxi- 
mal capacity ~c = 2/rr at T = 0  in agreement with the extremely diluted 
Hopfield model. (3~ For increasing b, ~c increases up to 0.809 for b = 0.404. 
For greater values of b, c% decreases again. This behavior at T = 0 (see also 
ref. 2) is quite analogous to that for the fully connected sequential Q = 3 
model, derived using a mean-field theory approach. (4) Here the maximal 
capacity is an order of magnitude bigger (e.g., for b = 1/2 we find ec = 0.329 
versus c~c = 0.047 for the connected model).  In Fig. 4 we indicate how this 
behavior changes as a function of the temperature. For T =  0 we can draw 
a curve below which no sustained activity solutions can be found. For 
T # 0  this type of solution can be found everywhere. We also remark that 
these solutions are independent of  the pattern activity a. We clearly see in 
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.o0 .da .0'(1 .go .lz 
e.o. - - ~  ('r b = 0 . 4 7  a = 0 . 4  
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"-o 1.(1 
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0 .0  
.00  .Or3 

m 
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F i g .  7. T h e  s a m e  a s  F i g .  5 f o r  b = 0 . 4 7  a n d  c~ = 0 . 4 0 .  
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this figure in which (b, ~) region the network functions as an associative 
memory, i.e., where dynamically stable states m * >  0 exist. 

In Figs. 3 and 4 we have also indicated the nature of the disappearance 
of the retrieval solutions. For 0 < b < 0.462 the transition is second order, 
for 0.462 <~ b ~< 0.483 the order of this transition depends on ~, and for 
0.483 ~< b < 1 the transition is completely first order. 

These results are further illustrated in Figs. 5-7. There the overlap m, 
the activity a, and the Hamming distance d are depicted as a function of 
T for representative values of b and ~. From these figures we also conclude 
that in order to evaluate the retrieval quality of the network, we have to 
take into account all three quantities m, a, and d. To fix our ideas, let us 
consider, e.g., the following example at T =  0. For fixed ~ = 0.15, Figs. 5a 
and 6a show that m decreases as a function of a, whereas Figs. 5c and 6c 
indicate that also d decreases. This at first sight conflicting behavior is 
explained by the results on the activity a: in Fig. 6b this activity is closer 
to the pattern activity a = 2/3 than in Fig. 5b. 

Hence, to determine the optimal retrieval quality of the network we 
have to take into account the values of the parameters m, a, and d together 
with the size of the basin of attraction. This is a different problem requiring 
further investigation. 
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